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Abstract. Time delays can occur naturally or as transport lags in many physico-chemical as well
as biological systems. Incorporating them into a lumped parameter system results in a system of
first-order ordinary delay-differential equations (DDEs). In this paper, we develop two-parameter
periodic solutions near a Hopf point in such systems using the general reductive perturbation
theory and apply the results to a nonisothermal chemical reactor with delayed feedback. The
paper suggests that the two-parameter result can be generalized to multiple time delays and other
parameters. Results of this work can be useful in constructing plane wave solutions, rotating waves,
phase singularity and other interesting phenomena for temporal kinetic systems with time delays.

1. Introduction

Analysis of dynamical systems in the presence of time delays has been a topic of interest to
researchers in diverse fields. The time delays appear as the intrinsic or extrinsic character of a
system. These time delays can alter the stability characteristics of the dynamics. For example,
the transport of reactant species from one site to another before the reaction takes place in
Goodwin’s model (MacDonald 1973) describing protein synthesis and cell metabolism is an
example of an intrinsic time lag. On the other hand, a reactor designed for a low conversion
reaction may have a recycle of the unreacted material from the reactor products. This recycle
feedback will experience a transport lag, which is an example of an extrinsic time delay. Such
delays also occur in other reactors such as spark engines with intrinsic time delays and plug flow
reactors with delayed recycles (Schell and Ross 1986). Recently, Inamdar and Kulkarni (1993)
analysed the kinetic instabilities in reaction–diffusion systems for an exponential autocatalytic
reaction. For the same system, Inamdaret al (1991) studied the onset of kinetic and diffusive
instabilities in the absence of a time delay and the stability of plane wave solutions. These
plane wave solutions, which are uniform oscillations, lie very close to the Hopf point. Such an
analysis for the delay-differential equations (DDEs) will indeed be useful in studying the effect
of time delays on chemical instabilities. An equation of small amplitude motion will help in
further investigation into higher-order transitions. It will also help in knowing whether the
kinetic or the diffusive effects will cause an instability first in a reaction dynamics. Thus the
analysis will be a key result in the design of various types of chemical and biological reactors.
This is our motivation for further research on systems with time delays.

Feedbacks in many open non-equilibrium systems such as autocatalysis, cross-catalysis,
etc and other types of feedback loops are responsible for complex nonlinear behaviour in such
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systems. For instance, many chemical reaction systems, when far from equilibrium, show
exotic bifurcation patterns leading to multi-stationarity and/or periodic or quasi-periodic or
even chaotic oscillations. An intrinsic or extrinsic time lag present in a system can give rise
to a more complex spatio-temporal organization of open non-equilibrium systems. In many
biochemical systems, intrinsic time delays arise due to the transport of chemical species across
a membrane or the transmission of a signal by circulating hormones or the regulation of reaction
pathways etc. MacDonald (1978) gives an excellent summary of biological systems having
discrete and distributed time lags. Analyses of these systems have shown that the time delay
can destabilize a stationary state resulting in periodic oscillations. Several investigations also
suggest that time delays can be responsible for biochemical oscillations. For instance, Rapp
(1974) showed that biochemical oscillations arise due to end product inhibition with a time
delay. Mackey and Glass (1977) reported an onset of respiratory disorders, while Buchholtz
and Schneider (1987) simulated DNA replication in T3/T7 bacteriophage in the presence of
time delays.

Schell and Ross (1986) detailed the effect of time lags on the temporal evolution of
homogeneous chemical reactions and also on trajectories near the saddle and periodic orbits.
They also showed the presence, due to time delay, of chaos and hyperchaos near these
bifurcation points. Roeskyet al(1993) experimentally studied theB–Z reaction with a built-in
time delay between the input and the output to the reacting system and observed a variety of
periodic states by changing the time delay and coupling strengths. Even chaotic states were
observed which were not seen during the delay-free running of the oscillator for the same
residence time. Inamdaret al (1991) studied the effect of time delay on a non-isothermal
continuously stirred tank reaction (CSTR) with a first-order exothermic reaction. They found
that time delay can lead to a torus-like formation in a phase plane for a stable limit cycle of a
CSTR dynamics without delay. They also reported the formation of kinks and knots for limit
cycle solutions in a three-solution region for various sets of parameters.

In this study, we consider the effect of simultaneous perturbations in a system parameter
and a time delay. We first give a two-dimensional motivating example of a non-isothermal
continuous stirred tank reactor with a recycle. Through this example, we illustrate the main
steps of the procedure in this paper. Then, we present the full analysis for a general system of
DDEs. In that, we first derive the evolution equations with perturbations in the two parameters
and then derive a non-trivial periodic solution for a small amplitude orbital motion near a
Hopf point. Finally, we reconsider the motivating example and illustrate the application of
our general result by performing all numerical calculations for a Hopf point in the example
system.

2. Motivating example

For illustrating the main steps of our general derivation, we consider a non-isothermal chemical
reactor (CSTR) with a time-delayed feedback recycle. Its dynamics are described (Uppalet al
1974) by the following DDEs:

dX

dt
= −X + γeY (1−X) + (1− R)X(t − τ)

dY

dt
= −Y +µγeY (1−X)− αY + (1− R)Y (t − τ)

and its stationary solutions are given by the implicit equations exp[Ys ] = RXs/ [µ(1− Xs)]
andXs = (α + R)Ys/(µR). First, we define deviational state variablesx(t) = (X(t) −
XsY (t) − Ys)T andy(t) = x(t − τ) and express the right-hand side of the above DDEs as a
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Taylor series inx andy about the stationary state to get,
dx

dt
= Ax +By +Cxx +Dxy +Eyy + Fxxx +Gxxy +Hxyy +Pyyy + · · · (1)

where the various matrices are given by,

A =
(−1− γeYs γ (1−X)eYs
−µγeYs −(1 +α) +µγ (1−Xs)eYs

)
B = (1− R)I
C = γeYs

2

(
0 −1 −1 1−Xs
0 −µ −µ µ(1−Xs)

)
D = E = G =H = P = 0

F = γeYs

6

(
0 0 0 −1 0 −1 −1 1−Xs
0 0 0 −µ 0 −µ −µ µ(1−Xs)

)
andxx, xy, etc are Kronecker productsx⊗ x, x⊗ y, and so on.

In addition to the delayτ , the above system has four possible parametersγ , α, µ, and
R. Each parameter by itself may lead to oscillations in this system beyond a critical value.
However, it may happen that a combination of two parameters also results in oscillations. Our
interest in the above system is to examine the combined effect of two parametersµ andτ
near a Hopf point. We assume that (µ = η, τ = β) is a critical combination representing
a Hopf point. In this section, we perform a perturbation analysis near this point using the
reductive perturbation theory to obtain equations describing system oscillations. To this end,
we first define two perturbation parametersε andδ byµ = η +χ1ε

2 andτ = β +χ2δ
2, where

χ1 = sgn(µ− η) andχ2 = sgn(θ − β).
The main idea behind our approach is to express all terms in equation (1) as series

expansions inε andδ to derive perturbation equations. Then we solve these equations to get an
expression for the system oscillations characterized by a pair of purely imaginary eigenvalues.
Thus, we postulate a solution,

x(t) = εx10 + δx01 + ε2x20 + 2εδx11 + δ2x02 + ε3x30 + 3ε2δx21 + · · ·
y(t) = εx10(t − τ) + δx01(t − τ) + ε2x20(t − τ) + 2εδx11(t − τ) + · · · .

Sincet − τ = t − β − χ2δ
2, we expandxij (t − τ) as a Taylor series aboutt − β to get,

xij (t − τ) = yij (t)− χ2δ
2∂yij (t)

∂t
+
δ4

2

∂2yij (t)

∂t2
− · · ·

where,yij (t) = xij (t − β). The above equation can be substituted in the earlier expression
for y(t) to get an expansion ofy(t) in terms ofyij (t).

We seek a solution in terms of various timescalest , θ10 = εt , θ01 = δt , θ20 = ε2t ,
θ02 = δ2t , etc. To this end, we express the total time derivative in terms of the timescales using
the chain rule of differentiation as,

d

dt
= ∂

∂t
+ ε

∂

∂θ10
+ δ

∂

∂θ01
+ ε2 ∂

∂θ20
+ εδ

∂

∂θ11
+ δ2 ∂

∂θ02
+ · · · .

Finally, sinceA, C, F etc are also functions ofµ, we expand them as Taylor series about
µ = η to get,

A = A0 + χ1ε
2A1 + ε4A2 + · · ·

A0 = A(µ = η)
A1 = γeYs

(
0 0
−1 1−Xs

)
A2 = A3 = A4 = A5 = · · · = 0.
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Having expanded all of the terms in the DDEs as series inε andδ, we substitute them back
into the DDEs and compare the coefficients of various orders ofε andδ from both sides of the
DDEs. Since this can be done easily using a symbolic manipulation software and it is pointless
to give all the details, we give the resulting equations for only the first-order terms, i.e. those
involving ε andδ, as follows:

∂x10

∂t
−A0x10−B0y10 = 0

∂x01

∂t
−A0x01−B0y01 = 0.

The next step is to solve the above differential equations and the others from higher orders to
get expressionsxij (t), but we stop here. Having illustrated the basic idea behind our procedure
through this example, we proceed directly to address a general system of DDEs. At the end
of this paper, we will apply our results to this example system and present numerical results.

3. Perturbation analysis

Let a general autonomous system with one time delay be described by the following DDEs:

Ẋ(t) = 0[X(t),Y (t), µ] X(0) = X0 X,Y ∈ Rn

Y (t) = X(t − τ) (2)

whereµ is a system parameter,τ > 0 is a time delay, andRn is ann-dimensional Euclidean
space. LetX(t) = Xs be a stationary solution for the above system. ClearlyY (t) = Xs at
steady state. Then equation (2) in its local (deviational) form becomes,

ẋ = f(x,y, µ) x,y ∈ Rn (3)

wherex(t) = X(t)−Xs andy(t) = Y (t)−Xs .
In the extreme cases ofτ = 0 andτ = ∞, µ is the only bifurcation parameter of

interest. A finiteτ , which can affect system stability and bifurcation patterns, becomes a
second parameter in the above system. Thus, perturbations inµ andτ , either individually or
jointly, can cause oscillations in the system and a two-parameter study is warranted to account
for both parameters simultaneously.

Let a critical combination(µ = η, τ = β) represent a Hopf bifurcation point in
equation (3). We analyse the system behaviour in the neighbourhood of this critical point
arising due to perturbations inµ andτ . Furthermore, we are interested in perturbations that
destabilize the system into periodic oscillations. In other words, we assume that there exists
a pair of eigenvalues with zero real parts for the linearized system at this Hopf point and
all other eigenvalues have negative real parts, so that any perturbation in parameters makes
the system oscillate. We wish to derive a single two-parameter equation describing such
small amplitude oscillatory motion of the system. As done in example (1), we define two
perturbation parametersε andδ byµ = η + χ1ε

2 andτ = β + χ2δ
2, whereχ1 = sgn(µ− η)

andχ2 = sgn(τ − β).
For using the method of multiple timescales, we define the perturbation timescales

θij = εiδj t , i = 0,∞, j = 0,∞, thusθ00 = t is the fast timescale and the rest are the
slow timescales. In other words, nowt ≡ t (θij ) andx(t) ≡ x(ε, δ, θij ). As mentioned earlier,
our strategy will be to write perturbation expansions for the various components of equation (3)
to expand both its (left and right) sides as perturbation series in terms ofεiδj . Equating the
series coefficients from both sides will give us a series of perturbation equations which will
describe the system motion in different timescales.
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Thus, we start with the expansions ofx(t) andy(t). We assume the following two-
parameter expansion forx:

x(ε, δ) =
∞∑
i=0

∞∑
j=0

(i + j)!

i!j !
εiδjxij (θij ) x00 = 0. (4)

Using the above,y(t) becomes

y(t) =
∞∑
i=0

∞∑
j=0

(i + j)!

i!j !
εiδjxij (t − τ). (5)

Sincet − τ = t − β − χ2δ
2, eachxij (t − τ) can be further expanded as a Taylor series about

(t − β) as

xij (t − τ) = yij (t) +
∞∑
k=1

(−χ2)
k

k!
δ2k ∂

kyij (t)

∂tk

yij (t) = xij (t − β).
Using the above in equation (5), rearranging the series and renaming the indices, we get

y(ε, δ) =
∞∑
i=0

∞∑
j=0

εiδj
[
yij +

[j/2]∑
k=1

(i + j − 2k)!(−χ2)
k

i!(j − 2k)!k!

∂kyi(j−2k)

∂tk

]
(6)

wherey00 = 0 and [j/2] denotes the greatest integer less or equal toj/2.
Let us now expand the time-derivative operatorΘ ≡ d/dt . We define operators

Θij = ∂/∂θij and expressΘ using the chain rule as

Θ(ε, δ) = Θ00 + εΘ10 + δΘ01 + ε2Θ20 + εδΘ11 + δ2Θ02 + · · · . (7)

From equations (4) and (7), the right-hand sideΘx of equation (3) also becomes a perturbation
series. We define the coefficients of this series by the following:

Θ(ε, δ)x(ε, δ) =
∞∑
i=0

∞∑
j=0

(i + j)!

i!j !
εiδjgij . (8)

Finally, we expandf(x,y) as a Taylor series about the stationary state,

f(x,y) = Ax +By +Cxx +Dxy +Eyy + Fxxx +Gxxy +Hxyy +Pyyy + · · ·
where the partial differential operatorsA,B, etc areA = fx, B = fy, C = fxx/2!,
D = fxy,E = fyy/2!, F = fxxx/3!,G = fxxy/2!,H = fxyy/2! andP = fyyy/3!, where
fxy denotes∂2f/∂x∂y, etc. Since these operators are all functions ofµ only, we further
expand them as Taylor series aboutµ = η. Usingµ(ε) = η + χ1ε

2, we get,

A =
∞∑
i=0

(χ1)
iε2iAi (9)

B =
∞∑
i=0

(χ1)
iε2iBi (10)

Ai = 1

i!

[
∂i+1f

∂x∂µi

]
ε=δ=0

Bi = 1

i!

[
∂i+1f

∂y∂µi

]
ε=δ=0

. . . .

With the help of above operators, the right side of equation (3) also becomes a perturbation
series inε andδ. Analogous to equation (8), we define the coefficients of this series by

f(ε, δ) =
∞∑
i=0

∞∑
j=0

(i + j)!

i!j !
εiδjfij . (11)
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Comparing the coefficients of expansions ofΘx = f (equation (3)) in equations (8) and
(11), we getgij = fij , i = 0,∞, j = 0,∞, as the series of perturbation equations. These
perturbation equations are nothing but partial differential equations describing the system
motion. In the next section, we evaluate thefij andgij to identify these differential equations.

4. Perturbation equations

Since derivation of thegij and thefij involves tedious algebra, we start with the first-order
(i + j = 1) terms and then proceed step by step up to the third-order terms. Since terms
up to the third order suffice to fully describe the small amplitude motion (i.e. the motion in
first order), we do not consider the higher-order terms. We evaluategij andfij by using a
symbolic manipulator. Note thatg00 = 0. For the first-order(i + j = 1) coefficients, we get,
gij = Θ00xij , fij = A0xij +B0yij and the first-order perturbation equations (gij = fij for
i + j = 1) are,

(Θ00−A0)xij −B0yij = 0 (i + j = 1). (12)

These are the two fundamental homogeneous equations for the system. They implyx10 =
x01 ≡ x1 andy10 = y01 ≡ y1.

Using the above simplifications in evaluating the second-order(i + j = 2) coefficients,
we get,g20 = Θ00x20 + Θ10x1, g11 = Θ00x11 + (Θ10 + Θ01)x1/2, g02 = Θ00x02 + Θ01x1,
andfij = A0xij +B0yij + C0x

2
1 +D0x1y1 + E0y

2
1. Therefore, the perturbation equations

(gij = fij , i + j = 2) become,

(Θ00−A0)x20−B0y20 = C0x
2
1 +D0x1y1 +E0y

2
1 −Θ10x1

(Θ00−A0)x11−B0y11 = C0x
2
1 +D0x1y1 +E0y

2
1 − (Θ10 + Θ01)x1/2

(Θ00−A0)x02−B0y02 = C0x
2
1 +D0x1y1 +E0y

2
1 −Θ01x1.

(13)

For the above three equations to have a periodic solution, a condition known as the solvability
condition (Kuramoto 1984) or the Fredholm alternative (Iooss and Joseph 1990) must be
satisfied. Applying the solvability condition to the above equations, we getΘ10x1 = Θ01x1 =
0. With this result, the above three equations reduce to one equation and we definex2 = xij
andy2 = yij for i + j = 2.

Similarly, evaluating the third-order(i + j = 3) coefficients, we get the following third-
order perturbation equations:

(Θ00−A0)x30−B0y30 = h + [χ1(A1x1 +B1y1)−Θ20x1]

(Θ00−A0)x21−B0y21 = h + [χ1(A1x1 +B1y1)−Θ20x1−Θ11x1]/3

(Θ00−A0)x12−B0y12 = h− [χ2B0Θ00y1−Θ02x1−Θ11x1]/3

(Θ00−A0)x03−B0y03 = h− [χ2B0Θ00y1−Θ02x1]

(14)

where,h = F0x
3
1 +G0x

2
1y1 +H0x1y

2
1 +P0y

3
1 + 2C0x1x2 +D0(x1y2 + x2y1) + 2E0y1y2.

Before we derive the solutions for the variousxij (1 6 i + j 6 3), we first analyse the
two-parameter perturbation expansion of the eigenvalue problem for the linearized system.
This is needed because thexij will be expressed in terms of its eigenvalues and eigenvectors.

4.1. Eigenvalue problem

The eigenvalue problem for the linearized equation (3) is,

(A + e−λτB)U = λU (15)
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and the characteristic polynomial is,

det[A + e−λτB − λI] = 0

whereU is the right unit eigenvector. We now expand both the eigenvalues and the eigenvector
U in the neighbourhood of this two-parameter critical point. Since both are perturbation
functions ofµ andτ , we expand them as Taylor series around(ε = 0, δ = 0) to obtain,

λ = λ0 + χ1λ20ε
2 + χ2λ02δ

2 + λ40ε
4 + χ1χ2λ22ε

2δ2 + λ04δ
4 + · · · (16)

U = U0 + χ1ε
2U20 + χ2δ

2U02 + · · · . (17)

Using equation (16) andτ = β + χ2δ
2, we obtain,

e−λτ = e−λ0β [1− χ1βλ20ε
2 − χ2(λ0 + βλ02)δ

2 + · · ·].
Now we substitute the above perturbation expansion and those from equations (9), (10), (16)
and (17) into equation (15). Then, we collect and compare the coefficients ofε2 andδ2 order
terms on both sides to get

(L0 − λ0)U0 = 0

(L0 − λ0)U20 + (A1 + e−λ0βB1)U0 = λ20(I + βe−λ0βB0)U0

(L0 − λ0)U02− λ0e−λ0βB0U0 = λ02(I + βe−λ0βB0)U0

L0 = A0 + e−λ0βB0.

LetU ∗0 be an adjoint eigenvector ofU0 such thatU ∗0L0 = λ0U
∗
0 , U ∗0U0 = 1 andU ∗0 Ū0 = 0.

Multiplying both sides of the above equations byU ∗0 and simplifying, we get the following
results:

λ0 = a0 + b0e−λ0β

λ20 = (1 +βb0e−λ0β)−1(a1 + b1e−λ0β)

λ02 = (1 +βb0e−λ0β)−1(−λ0b0e−λ0β)

(18)

wherea0 = U ∗0A0U0, b0 = U ∗0B0U0, a1 = U ∗0A1U0, andb1 = U ∗0B1U0.
Since our interest is the scenario in which any perturbation in the system parameters causes

oscillatory motion, the linearized system must have purely imaginary eigenvalues at the Hopf
point. In other words,λ0 = ±iω0, whereω0, as we see later, is the fundamental frequency
of oscillations in the fast timescale. From here on, we will derive results forλ0 = iω0 only.
Substitutingλ0 = iω0 in equation (18), we get,

z = e−iω0β = iω0 − a0

b0
.

Separating the real and imaginary parts in the above, we get the following explicit expression
for ω0:

ω0 = Im a0 ±
√
‖b0‖2 − (Rea0)2 (19)

where Rea0 and Ima0 denote, respectively, the real and imaginary parts ofa0. Since we must
have real positiveω0, further analysis of equation (19) reveals that a necessary condition for the
oscillatory motion is‖b0‖ > |Rea0|. Furthermore,ω0 > 0 is possible only if (a)‖a0‖ < ‖b0‖
or (b) Ima0 > 0 and‖a0‖ > ‖b0‖. Note that a uniqueω0 > 0 exists in case (a), while
two distinctω0 > 0 exist in case (b). However, no solution is possible when Ima0 < 0 and
‖a0‖ > ‖b0‖, asω0 < 0.

Substituting forω0 in equation (18) and solving forβ, we get,

β = 1

ω0
arctan

(
Im b0 +1Reb0

Reb0 −1Im b0

)
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where1 =
√

[‖b0‖2/(Rea0)2] − 1 andβ > 0. Clearly, multiple positiveβ are possible for
a system. The above expression forβ gives us a relation betweenη andβ, which must be
satisfied for the oscillatory motion at a Hopf point. In other words, it gives us a locus of Hopf
bifurcation points for various system parameter valuesη andβ.

5. Equation of motion

We now solve the PDE’s (equations (12)–(14)) derived in the previous section. From
equations (12), we have,

(Θ00−A0)x1−B0y1 = 0.

Since we proved earlier thatΘ10x1 = Θ01x1 = 0, we assume the following neutral solution
for the above equation:

x1(t) = W(θ20, θ11, θ02)e
+iω0tU0 + W̄ (θ20, θ11, θ02)e

−iω0tŪ0 (20)

whereW is a complex field and̄W is its complex conjugate.
From equations (13), we have,

(Θ00−A0)x2 −B0y2 = C0x
2
1 +D0x1y1 +E0y

2
1.

Since the inhomogeneous term in the above has only the zeroth and the second-order harmonics
after substitution of the assumed neutral solution, we assume the following form of solution
for the above equation:

x2(t) = W 2e+2iω0tV + W̄ 2e−2iω0t V̄ + ‖W‖2V0 + v0x1

whereV̄ is the complex conjugate ofV . Substituting the above in the previous ordinary
differential equation (ODE) and equating terms from both sides gives us

V = (2iω0I −A0 − zB0)
−1(C0 + zD0 + z2E0)U0U0

V̄ = −(2iω0I +A0 + z−1B0)
−1(C0 + z−1D0 + z−2E0)Ū0Ū0

V0 = −(A0 +B0)
−1[2C0 + (z + z−1)D0 + 2E0]U0Ū0

andv0 remains undetermined.
We now consider equations (14). Since the inhomogeneous terms in these equations have

first-order harmonics, the solvability condition must be satisfied. Substituting forx1 andx2

into their inhomogeneous terms and applying the solvability condition, we get the following
four Stuart–Landau (SL) equations:

Θ20W = p‖W‖2W + χ1(a1 + zb1)W (21)

Θ20W + Θ11W = 3p‖W‖2W + χ1(a1 + zb1)W (22)

Θ02W + Θ11W = 3p‖W‖2W − χ2(iω0zb0)W (23)

Θ02W = p‖W‖2W − χ2(iω0zb0)W (24)

p = U ∗0 [2C0 + (z2 + z−1)D0 + 2zE0]V Ū0 +U ∗0 [2C0 + (1 + z)D0 + 2zE0]U0V0

+U ∗0 [3F0 + (2z + z−1)G0 + (2 + z2)H0 + 3zP0]U0U0Ū0.

From equations (21) and (22), we get,

Θ11W = 2p‖W‖2W. (25)

Thus, a non-trivial solution of the three independent SL equations (equations (21), (24) and
(25)) will give usW , which will fully specify the equation of small-amplitude orbital motion.
To this end, let the complex amplitudeW be expressed in a polar form as:

W(θ20, θ11, θ02) = R(θ20, θ11, θ02)e
iφ20(θ20)eiφ11(θ11)eiφ02(θ02) (26)
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whereR, φ20, φ11 andφ02 are all real. We defineσ1 + iω1 = a1 + zb1, σ2 + iω2 = −iω0zb0

andp = p1 + ip2. SubstitutingW from equation (26) into equations (21), (24) and (25) and
separating the real and imaginary parts, we get the following amplitude and phase equations:

Θ20R = χ1σ1R + p1R
3 (27)

Θ11R = 2p1R
3 (28)

Θ02R = χ2σ2R + p1R
3 (29)

dφ20

dθ20
= χ1ω1 + p2R

2 (30)

dφ11

dθ11
= 2p2R

2 (31)

dφ02

dθ02
= χ2ω2 + p2R

2. (32)

Since the amplitude must be constant at steady state,ΘR = 0 at steady state, i.e.

lim
t→∞ΘR = lim

t→∞(ε
2Θ20 + εδΘ11 + δ2Θ02)R = 0.

Substituting from equations (27)–(29) into the above condition, we get the following expression
for the steady-state amplitudeRs :

Rs = 1

ε + δ

√
χ1σ1

−p1
ε2 +

χ2σ2

−p1
δ2.

Clearly the argument of the above root must be positive for periodic motion to exist. Setting
R toRs in equations (30)–(32), we derive the phase component solutions at steady state as,

φ20 = (χ1ω1 + p2R
2
s )θ20

φ11 = 2p2R
2
s θ11

φ02 = (χ2ω2 + p2R
2
s )θ02.

With these, an approximate solution describing the small amplitude orbital motion becomes,

X(t) ≈ Xs + (ε + δ)x1(t)

= Xs +
√
χ1σ1

−p1
ε2 +

χ2σ2

−p1
δ2[ei(ω0+χ1ω20ε

2+χ2ω02δ
2)tU0 + c.c.]

ω20 = ω1− σ1p2/p1

ω02 = ω2 − σ2p2/p1

where c.c. stands for the complex conjugate of the preceding term in the bracket. As
expected, setting either perturbation parameter to zero, we get the one-parameter result for
the other parameter. It is interesting to note that the above two-parameter solution is a
simple superposition of the amplitudes and the phases of the constituent one-parameter results.
Therefore, a generalization to systems with multiple delays and/or multiple system parameters
appears to be obvious.

For the linear stability analysis, we use equations (27)–(29) to get,

dR

dt
= (χ1σ1ε

2 + χ2σ2δ
2)R + p1(ε + δ)2R3.

Linearizing the above aboutR = Rs , we find that the amplitude is linearly stable if
χ1σ1ε

2 + χ2σ2δ
2 > 0, otherwise not. Sincep1 and(χ1σ1ε

2 + χ2σ2δ
2) must have opposite

signs for a periodic motion to exist, the solution stability is governed by sgn(p1). The orbital
motion is stable ifp1 < 0 and unstable otherwise.
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6. Example results

We now reconsider the motivating example described earlier (equation (1)). We will apply the
general results from the last section to compute a two-parameter Hopf point in this system and
also the corresponding equation of motion. We assume thatγ = 0.09, α = 3, µ = 30 and
R = 0.3. For this set of parameter values, we numerically solve the equation

Xs = R + α

µR
ln

[
RXs

γ (1−Xs)
]

to get the stationary state as(Xs = 0.6183, Ys = 1.6862) and also to compute the various
system matricesA0,B0, etc as

A0 =
( −1.486 0.186
−14.577 1.564

)
A1 =

(
0 0

−0.486 0.185

)
B0 = 0.7I

C0 =
(

0 −0.243 −0.243 0.093
0 −7.289 −7.289 2.782

)
F0 =

(
0 0 0 −0.081 0 −0.081 −0.081 0.031
0 0 0 −2.430 0 −2.430 −2.430 0.927

)
B1 = D0 = E0 = G0 =H0 = P0 = 0.

Using the above, the expressions forV , V0 andp simplify as

V = (2iω0I −A0 − zB0)
−1C0U0U0 (33)

V0 = −2(A0 +B0)
−1C0U0Ū0 (34)

p = 2U ∗0C0(V Ū0 +U0V0) + 3U ∗0F0U0U0Ū0. (35)

To obtain the eigenvectors, we rewrite the characteristic polynomial det[A0 + e−iω0βB0−
iω0I] = 0 as det[A0 +ψI] = 0 withψ = e−iω0β(1− R)− iω0. Clearly forω0 to be real,ψ
must be complex. Thus if we defineψ = ψ1 + iψ2 and solve the characteristic polynomial we
get

ψ1 = −T
2
= −0.0393 (T = Trace[A0])

ψ2 = ±
√

4D − T 2 = ±0.6145 (D = det[A0]).

Now we solve the eigenvector equations [A0 + ψI]U = U ∗[A0 + ψI] = 0 with ψ =
0.0393 + 0.6145i to getU andU ∗. We normalize them to getU0 andU ∗0 as follows:

U0 = U/‖U‖ = ( 0.1121 0.9217− 0.3714i)T

U ∗0 = U ∗/(U ∗ ·U) = (4.4607− 11.0714i 1.3464i).

Using the above, we calculatea0 = U ∗0A0U0, b0 = U ∗0B0U0 andb1 = U ∗0A1U0 to get
Rea0 = 0.0393, Ima0 = −0.6145, Reb0 = 0.7, Imb0 = 0, σ1 = Reb1 = 0.0927, and
ω1 = Im b1 = 0.1569. Using equation (19), we get one positive rootω0 = 0.0844. This is
the fundamental frequency of oscillations for this example system. Using this, we calculate
z = (iω0 − a0)b0 = −0.0561 + 0.9984i and usingψ1 = (1 − R) cosω0β = −0.0393,
we get β = 1.627. Thus,η = 30 andβ = 1.627 constitute a two-parameter Hopf
point for this non-isothermal CSTR. Furthermore, we getσ2 = Re [−iω0b0z] = 0.059 and
ω2 = Im [−iω0b0z] = 0.0033.
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Now we are ready to calculatep. To this end, we first obtainV = (0.4231− 1.8955i −
2.0233− 16.5626i)T from equation (33) andV0 = (0.2955 0.8059)T from equation (34).
Finally, substituting the vectors and matrices into equation (35), we getp1 = Rep = 40.0668
andp2 = Im p = 4.2961. Finally, the orbital motion is given by,

X(t) ≈ Xs + 10−2
√
−23.1χ1ε2 − 14.7χ2δ2[ei(ω0+χ1ω20ε

2+χ2ω02δ
2)tU0 + c.c.]

where,ω0 = 0.0844,ω20 = 0.147 andω02 = −0.0033. Sincep1 is positive, the orbital
motion is unstable.

7. Conclusion

We used reductive perturbation theory to derive a two-parameter equation for small amplitude
orbital motion near a Hopf point in an autonomous system of DDEs with one time delay
and one system parameter. The equation of motion indicates that the phases and amplitudes
corresponding to the one-parameter motions simply superpose to yield the two-parameter
result. Therefore, the final result is easily generalized to a system with two or more time
delays and/or system parameters. We also derived a two-parameter locus of Hopf points. We
find that several time delays may result into Hopf points for a given system parameter and that
two oscillatory solution frequencies may be possible under some conditions at a given Hopf
point.
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